Faculty of Working Machines and Transportation

STUDY MODULE DESCRIPTION FORM						
Name of the module/subject Management of Road Transportation Systems		Code 1010615221010610358				
Field of study Transport	Profile of study (general academic, practical) (brak)	Year /Semester				
Elective path/specialty	Subject offered in:	Course (compulsory, elective)				
Road Transport	Polish	obligatory				
Cycle of study:	Form of study (full-time,part-time)					
Second-cycle studies	part-time					
No. of hours		No. of credits				
Lecture: 20 Classes: - Laboratory: -	Project/seminars:	10 3				
Status of the course in the study program (Basic, major, other)	(university-wide, from another f	ield)				
(brak)	(brak)					
Education areas and fields of science and art		ECTS distribution (number and %)				
technical sciences		3 100%				
Technical sciences		3 100%				
Responsible for subject / lecturer:	Responsible for subject	ct / lecturer:				
Adam Redmer, Eng. PhD email: adam.redmer@put.poznan.pl	Paweł Zmuda-Trzebiatowski, Eng. MSc email: pawel.zmuda-trzebiatowski@put.poznan.pl					

ul. Piotrowo 3, 60-965 Poznań ul. Piotrowo 3, 60-965 Poznań Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	student has a basic knowledge of mathematics and operational research moreover transportation and management as well
2	Skills	student is able to accumulate information, interpret it, reasoning based on it, express and justify opinions, identify, associate and interpret phenomena occurring in a practice
3	Social competencies	student is aware of the importance and understands non-technical aspects and effects of transportation processes, including those coming from transportation management

tel. 61 665 27 16

Faculty of Machines and Transport

Assumptions and objectives of the course:

to prepare students for management of transportation systems and make them familiar with single and multicriteria methods that allow for optimization of real life transportation systems.

Study outcomes and reference to the educational results for a field of study

Knowledge:

tel. 61 665 21 29

Faculty of Machines and Transport

- 1. Students know the notion of the optimization (single and multiple criteria) and the decision making. [K2A_W01]
- 2. Students know steps of optimization and decision making processes. [K2A_W01]
- 3. Students know and understand make or buy, currier selection, fleet sizing/composition and replacement decision problems. [K2A_W02]
- 4. Students know principles of the optimization and the mathematical modeling. [K2A_W02]
- 5. Students know principles of the Multicriteria Decision Making / Aid ? MCDM/MCDA. [K2A_W04]
- 6. Students know methods and tools of the optimization (solver) and the decision making (AHP. ELECTRE, LBS, UTA). [K2A_W04]

Skills:

- 1. Students are able to carry out optimization and decision making processes. [K2A_U04]
- 2. Students are able to construct optimization / mathematical model of a problem and a decision maker preference model as well. [K2A_U05]
- 3. Students are able to select appropriate solution methods to models / problems. [K2A_U06]
- 4. Students are able to apply optimization and decision making / aid tools (software). [K2A_U05]
- 5. Students are able to asses obtained results and to recommend ways of their application. [K2A_U14]

Social competencies:

Faculty of Working Machines and Transportation

- 1. Students are aware of the significance of making wright / the best possible / optimal decisions in business practice. [K2A K02]
- 2. Students are aware of potential technical, economic and social effects that an improper / incorrect decision making / problems solving may cause. [K2A_K04]
- 3. Students are able to develop independently their knowledge of operational research, optimization and MCDM/MCDA. [K2A_K05]

Assessment methods of study outcomes

A final exam based on the knowledge obtained within the lectures (a multiple choice test).

Course description

The notion of the optimization and the decision making: introduction to the optimization and decision making (definitions, meanings)? multiple criteria in decision making? the essence of the compromise solutions.

Single criterion optimization: principles of the mathematical modeling, utilization of optimization tools, basic algorithms. Make-or-buy problem: the definition and the essence of the make-or-buy problem in transportation / logistics (in-house or outside logistics, in-house or outside transport).

Fleet sizing/composition problem: the definition of the fleet sizing/composition problem; the essence and characteristic of the problem; factors influencing fleet size /composition.

Multiple criteria optimization: principles of the multiobjective optimization, Pareto-optimal solutions of problems, methods of generating / seeking for Pareto optimal solutions.

Multicriteria Decision Making / Aid ? MCDM/MCDA: the definition and the essence of the MCDM/MCDA, classification of MCDM/MCDA methods; principles of decision maker?s preferences modeling; selection of an appropriate MCDM/MCDA tools; an application of MCDM/MCDA methods to a ?buy? option ? carriers selection and assessment; a ?make? option ? fleet replacement.

Logistic solutions for SME sector: case study; designing of a logistic solution for a given SME.

Basic bibliography:

- 1. Sikora W. (red.): Badania operacyjne. Polskie Wydawnictwo Ekonomiczne, Warszawa 2008.
- 2. Hillier F., Lieberman G.: Introduction to Operations Research. McGraw Hill Publishing, New York 2002
- 3. Wagner H.: Badania operacyjne: zastosowania w zarządzaniu. Polskie Wydawnictwo Ekonomiczne, Warszawa 1980.
- 4. Figueira J., Greco S., Ehrgott M. (eds.): Multiple Criteria Decision Analysis. State of the Art. Surveys. Springer, New York 2005.
- 5. Żak J.: Wielokryterialne wspomaganie decyzji w transporcie drogowym. Rozprawy, Nr 394, Wydawnictwo Politechniki Poznańskiej, Poznań, 2005.

Additional bibliography:

- 1. Jędrzejczak Z., Kukła K., Skrzypek J., Walkosz A.: Badania operacyjne w przykładach.
- 2. Jacyna M.: Modelowanie wielokryterialne w zastosowaniu do oceny systemów transportowych.

Result of average student's workload

Activity	Time (working hours)
1. Participation in lectures	20
2. Participation in laboratories	10
3. Individual work (homework and preparation to a final exam)	15
4. Learning of the classes content	20

Student's workload

Source of workload	hours	ECTS
Total workload	65	3
Contact hours	30	1
Practical activities	10	1